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Previous studies on hospitals’ efficiency often refer to quite restrictive functional forms for the technology
(Aigner et al., 1977, J. Econom., 6, 21–37) . In this paper, referring to a study about some hospitals
in Lombardy, we formulate convenient correctives to a statistical model based on the translogarithmic
function—the most widely used flexible functional form (Christensen et al., 1973, Rev. Econ. Stat.,
55, 28–45). More specifically, in order to take into consideration the hierarchical structure of the data
(as in Gori et al., 2002, Stat. Appl., 14, 247–275), we propose a multilevel model, ignoring for the
moment the one-side error specification, typical of stochastic frontier analysis (Aigner et al., 1977, J.
Econom., 6, 21–37). Given this simplification, however, we are easily able to take into account some
typical econometric problems as, e.g. heteroscedasticity. The estimated production function can be used
to identify the technical inefficiency of hospitals (as already seen in previous works), but also to draw
some economic considerations about scale elasticity, scale efficiency and optimal resource allocation of
the productive units. We will show, in fact, that for the translogarithmic specification it is possible to
obtain the elasticity of the output (regarding an input) at hospital level as a weighted sum of elasticities at
ward level. Analogous results can be achieved for scale elasticity, which measures how output changes
in response to simultaneous inputs variation. In addition, referring to scale efficiency and to optimal
resource allocation, we will consider the results of Ray (1998, J. Prod. Anal., 11, 183–194) to our
context. The interpretation of the results is surely an interesting administrative instrument for decision
makers in order to analyse the productive conditions of each hospital and its single wards and also to
decide the preferable interventions.

Keywords: elasticity; multilevel models; production function analysis; scale efficiency; scale elasticity;
translog function.

1. Introduction

Previous studies on hospitals’ efficiency often refer to quite restrictive functional forms for the tech-
nology (Aigner et al., 1997). In this paper, referring to a study about some hospitals in Lombardy, we
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formulate convenient correctives to a statistical model based on the translogarithmic function, which is
the most widely used flexible functional form for economic functions (Christensen et al., 1973; Kim,
1992; Grant, 1993; Ryan & Wales, 2000) and obtains also closed form measures of scale elasticity and
scale efficiency, readily computable from the fitted model (Ray, 1998). The aim of this work is, indeed,
to provide an administrative instrument, based on stochastic production function analysis, which is able
both to identify non-standard productive conditions and to propose convenient correctives, in the sense
of inputs re-allocation.

The translogarithmic specification is the second-order Taylor approximation of a generic production
function. In the simple case of one output (y) and two input variables (x1, x2), it is equal to

ln(y) = α0 + α1 ln(x1) + α2 ln(x2) + β11

2
[ln(x1)]

2 + β12 ln(x1) ln(x2) + β22

2
[ln(x2)]

2. (1)

The success of this functional form in many econometric applications is due to its flexibility (e.g.
the elasticity of the output with respect to an input is not constant, as for the Cobb–Douglas, but it is a
function of the inputs). This flexibility allows a large adaptability of the model, but, at the same time,
increases the multicollinearity.

In the present case of study, the choice of the translogarithmic specification is mainly connected to
the non-linearity of the relation between beds number (one of the input variables) and the hospitaliza-
tions number (the output variable). In addition, it allows to make some economic considerations about
scale elasticity, scale efficiency and optimal resource’s allocation of the productive units (Ray, 1998).

In order to take into consideration the hierarchical structure of the data, common in health context
(Leyland & Goldstein, 2001), we propose a multilevel model, ignoring for the moment the one-side error
specification, common in stochastic frontier analysis (Aigner et al., 1997). Given this simplification,
however, we are able to take into account some typical econometric problems as e.g. heteroscedasticity.

The data involved in the study are, in fact, characterized by the presence of two levels of data
collection. While the first one regards the single wards in each hospital, the second one is identified by
the hospitals. These two levels characterize the natural hierarchical structure of the Health System in a
microeconomic framework.

The paper is organized as follows. Section 2 describes the data involved in the study. Section 3
illustrates the model proposed. Section 4 presents the results of the analysis. Section 5 proposes some
economic considerations on the results. Section 6 gives some conclusions.

2. The data

As illustrated in the previous section, the data involved in the study are characterized by a two-level
hierarchical structure. More specifically, the considered data set refers to 1478 first-level units (wards)
observed in 178 second-level units (hospitals) of the Italian region Lombardy in 1997. This data set,
described in Gori et al. (2005), has been obtained from a deterministic linkage of three distinct archives:
the discharge database, the beds allocation database and the staff database. These three archives are
collected at different levels of detail. The discharge files are available for each hospitalization and,
among the other variables, include the ward and the hospital identifiers. This information allows to
calculate the total number of hospitalizations for each ward in a hospital (i.e. the total number of in-
patients dismissed in the observed time period), which will be our output variable (indicated by NHosp).
The beds number is available for each ward in a hospital (indicated by Beds). The staff variable (Staff)
is available only at hospital level, without the possibility of distinguishing among substructures, and
corresponds to the total number of doctors, nurses and administrative staff.
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TABLE 1 Descriptive statistics

Standard
Variable Min Median Max Mean deviation

ln(NHosp) 0.000 6.903 9.806 6.589 1.947
ln(Beds) 0.000 3.296 6.234 3.166 0.926
ln(Staff) 2.833 6.497 8.322 6.442 1.147
Mean DRG weight (ward level) 0.160 0.850 8.320 1.076 0.776
s.d. DRG weight (ward level) 0.000 0.420 6.870 0.682 0.937
Mean DRG weight (hospital level) 0.630 0.850 2.130 0.886 0.030
s.d. DRG weight (hospital level) 0.120 0.670 1.950 0.695 0.093
std[ln(CMix)] −10.350 −0.023 2.935 0.000 1

Then, some other information is taken into consideration. First of all, in order to distinguish the
hospitalizations by degree of complexity, we consider the case-mix index, which represents the relative
level of case complexity in each ward, calculated with respect to the regional mean value. In partic-
ular, we use a standardized version of the logarithm of this index (indicated by std[ln(CMix)]). This
variable allows to distinguish between wards with complexity measure under and over the average, the
latter probably characterized by a structural lower number of hospitalizations. This variable can be con-
sidered as a modifier of the effect of other input variables as we will see in the following paragraphs.
Then, in order to take into account the type of hospitalizations disease, an addictive linear component is
introduced in the production function model, consisting of four variables. These four variables are two
transformations of the diagnosis related groups (DRG) weight variable, calculated at hospital and ward
level. The DRG code derives from an international clusterization of the hospitalization cases; the DRG
weight provides a ‘proxy’ measure of the complexity of every treated case. The first transformation is
the mean of DRG weights (indicated by µWeig,i j and µWeig,i ) and represents the mean complexity of
observed cases at ward and hospital level. The second one is the standard deviation of DRG weights
(σWeig,i j and σWeig,i ) and allows to control the variability of the complexity in treated cases at the two
levels considered. These factors are introduced to affect only the level of production and not the pro-
duction process itself.

Table 1 summarizes the descriptive statistics of the variables involved in the model.
The pairwise scatter plot in Fig. 1 shows the relation between the output variable and the input

variables and in particular highlights the strong dependence between hospitalizations number and beds
number. From in-depth studies we conclude that this relationship cannot be considered linear.

3. The model

In order to model the number of hospitalizations we use a modified translog specification. In particular,
the complete translog model for the hospitalizations number, function of the beds number and the staff of
observed units is modified by the addition of two other components. The first one is a multiplicative term
that linearly depends on case-mix index. The second one is the additive linear component illustrated in
Section 2 (indicated in the following by f (Weights)).

Given the hierarchical structure of the data, we propose to adopt a multilevel model, with two levels
and random intercept, which can be formulated as follows:

ln(NHospi j ) = α(CMixi j ) + β(CMixi j , Bedsi j ) + γ (CMixi j , Staffi )

+ δ(CMixi j , Bedsi j , Staffi ) + f (Weights) + ui + εi j , (2)
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FIG. 1. Pairwise scatter plot among output variable and input variables.

where every single function is defined as

α(CMixi j ) = α0 + α1std[ln(CMixi j )],

β(CMixi j , Bedsi j ) = [β0 + β1std[ln(CMixi j )]]

[
ln(Bedsi j ) + β2

2
ln(Bedsi j )

2
]

,

γ (CMixi j , Staffi ) = [γ0 + γ1std[ln(CMixi j )]]
[
ln(Staffi ) + γ2

2
ln(Staffi )

2
]
,

δ(CMixi j , Bedsi j , Staffi ) = [δ0 + δ1std[ln(CMixi j )]][ln(Bedsi j ) ln(Staffi )],

f (Weights) = λ1µWeig,i j + λ2σWeig,i j + λ3µWeig,i + λ4σWeig,i ,

ui ∼ N (0, σ 2
u ) are the residuals at hospital level, i = 1, . . . , N , and εi j ∼ N (0, σ 2

ε ) are the residuals at
ward level, j = 1, . . . , M, with ui ⊥ εi j .
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Using a classical notation for the coefficients of mixed models, (2) can be re-written as

ln(NHospi j ) = α0i + α1 ln(Bedsi j ) + α2

2
[ln(Bedsi j )

2] + α3 ln(Staffi ) + α4

2
[ln(Staffi )

2]

+ α5[ln(Bedsi j ) ln(Staffi )] + α6[ln(Bedsi j ) std [ln(CMixi j )]]

+ α7[ln(Staffi ) std [ln(CMixi j )]] + α8[ln(Bedsi j ) ln(Staffi )std [ln(CMixi j )]]

+ α9[ln(Bedsi j )
2std [ln(CMixi j )]] + α10[ln(Staffi )

2std [ln(CMixi j )]]

+ α11std [ln(CMixi j )] + λ1µWeig,i j + λ2σWeig,i j + λ3µWeig,i + λ4σWeig,i + εi j , (3)

where α0i = α0 + ui , α1 = β0, α2 = β0β2, etc.
Note that the model defined in (3) can be seen as an unconstrained version of model (2). Equation

(3) is obtained by the substitution of α(CMixi j ), β(CMixi j ), γ (CMixi j ), δ(CMixi j ) and f (Weights) in
(2). This operation leads to a linear form with some restriction on parameter values, e.g. coefficients
connected to ln(Beds) correspond to β0, β1, β0β2

2 and β1β2
2 , that are only three different coefficients in

model (2) and, respectively, α1, α6, α9 and α2
2 in model (3). In order to justify the re-parameterization

in (3), we have performed a hypothesis test about non-linear restrictions (Godfrey, 1988). The Wald test
statistic presents a p-value of 0.0699, which allows to accept the null hypothesis. Given this result, the
following analysis is based on model (3), without any constraints on the interaction parameters. The
choice of formulation (3) is due not only to the ease in estimation by means of conventional statistical
software, but also because it allows an immediate interpretability of the coefficients.

Then, regarding the errors at first level, εi j , usually called residuals, the estimation results, performed
with the statistical software R (see Cribari-Neto & Zarkos, 1999; Ihaka & Gentleman, 1996), show a
high level of heteroscedasticity (see Fig. 2(A)). In order to include this information in the model, we
have defined a dependence of ε from one of the most significant inputs (the beds number), by means
of an exponential multiplicative variance function. Then, the corresponding model assumes that the
within-group errors are heteroscedastic, with variance function equal to

Var(εi j ) = σ 2
ε |Bedsi j |2θ . (4)

FIG. 2. Effect on the residuals of inclusion of heteroscedasticity in the model.



www.manaraa.com

388 L. GRASSETTI ET AL.

The plot of the standardized residuals (estimated by considering the inclusion of heteroscedasticity
in the model) in Fig. 2(B) shows that the problem of heteroscedasticity has been reduced.

Finally, the second level errors, ui , can be interpreted as efficiency indicators, as illustrated, e.g. in
Gori et al. (2005), and can be estimated by means of the ‘Empirical Bayes’ approach as described in
Pinheiro & Bates (2002) and Verbeke & Molemberghs (2000).

4. The results

In Table 2 we summarize the estimated coefficients for fixed and random effects of the model intro-
duced in (3), which takes also into consideration the heteroscedasticity. For variance components, as
Wald statistics based on the asymptotic standard error are not reliable, we provide the 95% confidence
intervals (CIs). For the parameters in the linear mixed-effects model, approximate CIs are obtained by
using the normal approximation of the distribution of the maximum likelihood (ML) estimators.

The prior aim of this paper is to focus on the economic interpretation of the estimated model. The
obtained coefficients show that quadratic forms of original variables have negative effects on the number
of hospitalizations as well as the complexity indexes (std[ln(CMixi j )], µWeig,i j · σWeig,i j and µWeig,i ).
Only σWeig,i presents a positive effect. A positive effect is, also, connected to the input variables con-
sidered in their original scale, also taking into consideration their interaction with the standardized
case-mix index. Some coefficients are not significantly different from 0. In Table 2 we report also these
least values in order to give a complete representation of the model specified in (3).

TABLE 2 Estimated coefficients of the mixed model with heteroscedasticity

Value Standard error p-Value

Fixed effects coefficients
α0 0.7941 1.0367 0.4434
α1 1.2328 0.1541 0.0000
α2 −0.0165 0.0163 0.3101
α3 0.9683 0.3033 0.0017
α4 −0.0630 0.0251 0.0129
α5 −0.0114 0.0236 0.6275
α6 0.3265 0.1756 0.0632
α7 0.9390 0.2315 0.0001
α8 0.0185 0.0232 0.4252
α9 −0.0443 0.0195 0.0232
α10 −0.0774 0.0183 0.0000
α11 −3.2004 0.8323 0.0001
λ1 −0.4798 0.0493 0.0000
λ2 −0.0591 0.0493 0.2305
λ3 −1.2266 0.3833 0.0016
λ4 0.6379 0.2689 0.0188

Random effects coefficients Lower bound Upper bound
θ −0.3773 −0.4170 −0.3375
σu 0.3502 0.3026 0.4053
σε 2.0625 1.8123 2.3474

Number of observations: 1478, number of groups: 178.
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FIG. 3. CIs for estimated BLUP random effects (ui ) at hospital level.

In Fig. 3 we have summarized the estimated best linear unbiased predictor (BLUP) error compo-
nents. CIs have been calculated on the basis of pairwise comparison theory given in Goldstein & Healy
(1995). The estimated BLUP error components and their standard errors have been computed following
Chapter 7 of Pinheiro & Bates (2002). The point estimates and their CIs are easily obtained from fixed
effects and variance ML estimates.

5. Some economic considerations

As just pointed out, the aim of this article is to investigate the elasticity of the hospitalizations number
with respect to the inputs of the model, in particular Staff and Beds, which are, indeed, the only variables
directly under the control of hospitals’ administration (Regional Agency for Health Care). As mentioned
previously, case-mix is treated as an exogenous variable, in order to distinguish among different types
of hospitalizations. Looking at our analysis results, in fact, it results that elasticity is strongly affected
by this variable; we will show in the following how elasticity varies for its different levels.

The elasticity of the output y for an input xr , defined as the marginal productivity of xr , divided by
the average productivity of xr , i.e.

e(xr ) = ∂y

∂xr

/
y

xr
= ∂ ln(y)

∂ ln(xr )
, (5)

is the percentage change in output associated with a unitary percent change in the r th input, holding all
other inputs constant, and represents a unit-free measure of the marginal productivity (Chambers, 1988).

From this formulation we obtain directly the elasticity at ward level, denoted by eW (coefficient
notations refer to (2)). For Beds we have:

eW(Beds)i j = ∂ ln(NHospi j )

∂ ln(Bedsi j )

= [β0 + β1std[ln(CMixi j )]][1 + β2 ln(Bedsi j )]

+ [δ0 + δ1std[ln(CMixi j )]] ln(Staffi ), (6)

and analogously, for Staff:

eW(Staff)i j = ∂ ln(NHospi j )

∂ ln(Staffi )

= [γ0 + γ1std[ln(CMixi j )]][1 + γ2 ln(Staffi )]

+ [δ0 + δ1std[ln(CMixi j )]] ln(Bedsi j ). (7)
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In both cases, the elasticity depends on the three explicative variables of the model. In particular, as
one can see in Appendix—Table A2, elasticities are mainly affected by the case-mix. Given a positive
case-mix value (considered in its standardized form), the estimated elasticity of the hospitalizations
number with respect to Beds (consider the right-hand side of the table) decreases with Beds, when Staff
is fixed. Specularly it increases with Staff, when Beds are fixed. On the contrary, given a negative
case-mix value, specular patterns can be observed. Finally, given a null value of case-mix, elasticities
are almost constant.

Table A1, in Appendix, summarizes the estimated elasticity for Beds and Staff calculated for every
observed macro units (i.e. at hospital level). Equation (7) can be, in fact, reformulated at hospital level
by writing output y as the sum of outputs of single micro unit, reducing itself to the weighted sum of
elasticities at ward level:

eH(Staff)i = ∂
∑

j yi j

∂Staffi

Staffi∑
k yik

=
∑

j

(
∂yi j

∂Staffi

Staffi∑
k yik

yi j

yi j

)
,

=
∑

j

(
∂yi j

∂Staffi

Staffi

yi j

yi j∑
k yik

)
,

=
∑

j

(
∂yi j

∂Staffi

Staffi

yi j
wi j

)
=

∑
j

(
∂ ln yi j

∂ ln Staffi
wi j

)
,

=
∑

j

eW(Staff)i jwi j , (8)

where eH indicates the elasticity at hospital level and wi j are to be intended as weights of the elasticities
at ward level.

It can be simply demonstrated, by means of the limit of the difference quotient, that analogous
results can be achieved for Beds, obtaining

eH(Beds)i =
∑

j

(
∂ ln yi j

∂ ln Bedsi j
wi j

)
=

∑
j

eW(Beds)i jwi j . (9)

The estimates of elasticity at hospital level are summarized in Fig. 4.
From this figure one can notice that, for Beds, the elasticity is concentrated around the unity. For

Staff, however, the plot shows that almost all units work in over-dimensioned conditions, and a few have
even reached a congested estate (the negative values). From a re-allocative point of view, we can then
identify situations where elasticity values can justify an input increase (elasticities greater than one) and
cases for which an additional input brings up no proportional output improvement (elasticities lower
than one).

Considering the sum of the elasticities for Beds and Staff, we obtain a slight interpretation of elas-
ticity results as the local returns to scale (so called elasticity of scale)

e(x) = e(Beds)i + e(Staff)i , (10)

where x indicates the input vector (Beds, Staff). The elasticity of scale is a scalar-valued measure of how
output changes in response to simultaneous input variation (Chambers, 1988). Here simultaneous input
variation is restricted to variations that do not change relative input utilization; i.e. the ratios (xr/xs) are
constant for all r and s.
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FIG. 4. Histograms of hospital elasticities for Beds and Staff.

By geometrical point of view, the elasticity of scale is interpretable as measuring how accu-
rately the distance between isoquants in input space reflects the distance in output space. In
particular, there are three possible characterizations of production functions. If e(x) = 1,
the production function exhibits constant returns to scale, and the isoquants are evenly
spaced. If e(x) < 1, the production function exhibits decreasing returns to scale, and
the distance between isoquants in input space overestimates the distance in output space.
Finally, if e(x) > 1, the distance in input space under-estimates the distance in output space,
and the production function exhibits increasing returns to scale; isoquants, therefore, tend
to be more crowded together as one moves along a ray from the origin (Chambers, 1988).

The preceding concepts have some economical interpretations.

Assume that, by a given endowment of inputs, the goal is producing as much output as
possible and that we can decide whether or not it would be better to split up the resource
endowment equally into m separate operations or to produce everything in one large opera-
tion. For convenience, suppose also that both alternatives are equally costly. If the available
technology is characterized by decreasing returns to scale, there is no incentive to centralize
the operation, and it is better to split up the operation; exactly analogous arguments show
that when e(x) = 1, centralization and decentralization are indifferent, and when e(x) > 1,
centralization is preferable (Chambers, 1988).

These situations can be interpreted as the estimated productive conditions of each hospital and each
ward. Focusing our analysis on hospital-level results, an estimated scale elasticity under the unity
identifies hospitals that present a congested condition, where investments are not useful and it is better
to reduce the dimension; on the contrary, hospitals that have a higher return to scale are the ones with
unused productive capacity, which could increase their dimension. This interpretation could be very
useful from an administrative point of view. Table A1, in Appendix, shows also the estimated scale
elasticity for each hospital. It can be noted, however, that the differences among hospitals are almost
entirely due to Staff elasticity. Staff and Beds values are also given in these tables in order to allow a
straightforward interpretation of the estimated values.
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Another interesting measure, relating to the returns to scale characteristics of a technology, is the
scale efficiency, which measures the ray average productivity at the observed input scale on the produc-
tion frontier relative to the maximum ray average productivity attainable at an input bundle x character-
ized by e(x) = 1, defined by Banker (1984) as the most productive scale size.

It needs to be emphasized that scale efficiency is lower than one whenever the observed
input mix is not scale-optimal, i.e. where locally constant returns to scale does not hold.
Scale elasticity, on the other hand, can be either greater than or less than unity. Only at
the most productive scale size both measures equal unity and are, therefore, equal to one
another. Elsewhere, they differ and the magnitude of scale elasticity does not directly reveal
anything about the level of scale efficiency (Ray, 1998).

Ray (1998) developed an input-oriented measure of scale efficiency, directly obtainable from an empir-
ically estimated single output–multiple input translog production function, e.g. regarding the translog
model

ln(NHosp) = α0 + α1 ln(Beds) + α2 ln(Staff) + β11

2
[ln(Beds)]2

+ β12 ln(Beds) ln(Staff) + β22

2
[ln(Staff)]2, (11)

and in the absence of technical inefficiency, the scale efficiency is equal to

SE(x) = exp

{
(1 − e(x))2

2β

}
, (12)

where β = ∑2
r=1

∑2
s=1(βrs).

In the more general case involving technical inefficiency, it is equal to

SE(x) = exp

⎧⎪⎨
⎪⎩

[
1 − √

e(x)2 − 2βθ
]2

2β

⎫⎪⎬
⎪⎭ , (13)

where θ is the technical inefficiency (in our case we can obtain it from a modified ordinary least squares
(MOLS) or Corrected ordinary least squares (COLS) transformation of the second-level error compo-
nent). This measure can be computed for each hospital from the fitted translog production function.

As previously seen, a practical implication of returns to scale analysis is that any input characterized
by increasing returns to scale should be expanded, while one with diminishing returns should be scaled
down in order to attain full scale efficiency. Supposing it is possible to change relative input utilization,
an interesting question would be: what level of Staff combined with the given quantity of Beds would
result in a scale-optimal input mix?

Ray (1998) developed an index, in the two-input case, which measures the extent to which the ob-
served quantity of Staff differs from what would be the optimal level in light of the size of its actual Beds.

Let B0 be the exogenously fixed quantity of Beds, S0 the observed quantity of Staff and (S∗
0 ) the

optimal quantity of Staff (in the sense of most productive scale size). Ray (1998) defined

σ = S∗
0

B0

/
S0

B0
= S∗

0

B0

B0

S0
= S∗

0

S0
. (14)
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Clearly, σ = 1 if and only if the observed pair (S0, B0) is itself scale-optimal. Otherwise, σ > 1 implies
that the actual Beds–Staff ratio is higher than the optimal. Similarly, σ < 1 implies excessive number
of Staff relative to the optimal level.

For the translog case the index is equal to

σ = exp

{
1 − e(S0, B0)

β22 + β12

}
, (15)

i.e. it depends on both the observed scale elasticity, e(S0, B0), and the estimated values of the parameters
in the denominator. Thus, the mere fact that increasing returns to scale hold at any given input bundle
does not by itself imply that the observed quantity of Staff is too low.

It should be noted, however, that if β22 + β12 = 0, there will not exist a finite S∗
0 for the

given B0 (Ray, 1998).

6. Conclusions

The decision to measure the efficiency of health services by the given model is due to both interpretabil-
ity and flexibility of the functional form. The model proposed is certainly a simplified version of the
complete econometric model specification (some other variables, in fact, can affect the analysed phe-
nomenon) but, also at this preliminary stage, some of the obtained results are really closed to the de-
sirable hypotheses. Then one can conclude that the application of this methodology provides useful
and reliable results. Some attention should be focused, however, on typical econometric problems, like
outlier detection; this is, in fact, still an unsolved problem in the multilevel framework, because it is
not easy to identify at which level outliers should be searched (see Langford & Toby, 1998; Barnett &
Toby, 1994).

By means of deterministic COLS and MOLS approaches (Greene, 1993), decision makers can in-
terpret the random effect BLUP estimates (ûi ) as indicators of structure efficiency. The larger the effect,
the better the productive process. Then, the interpretation of estimated elasticities provides some infor-
mation about the productive conditions of observed units.

Our results show that, as beds elasticities are mainly concentrated around unity, the interest of de-
cision makers should be focused on estimated staff elasticities. Both staff elasticity and scale elasticity
highlight the presence of over- and under-dimensioned units, i.e. situations where a re-allocation of staff
is necessary.

The sample used for the analysis included different kinds of hospital structures. As reported in
Table 3, while structures classified as ‘hospitals’ and ‘classified hospitals’ are almost homogenous in
terms of staff elasticity, ‘private and public clinics’ present a large variability. ‘Research structures’ are
instead characterized by a low average staff elasticity and, consequently, worse productive conditions,
maybe due to the different goal of these structures. Here staff is quite completely devoted to research
and the health service is considered only as a secondary aim.

In our analysis, the Case-Mix is treated as an exogenous variable, which does not interfere with
hospital politics. This is correct in the case that we consider as fixed the service demand for each
structure. As one can see in Table A2 of Appendix, substantial changes in case-mix index cause the
raise of different elasticity patterns.

Future developments will consider the generalization of Ray’s (1998) results to our model specifi-
cation and the consequent estimation of scale efficiency and σ -index for scale optimality of input mix.
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TABLE 3 Elasticity summary statistics of hospitalization structures clusters

Percentiles Standard
deviation

Observed
number0.01 0.25 0.5 0.75 0.99 Mean

Beds elasticities structure type
Hospitals 0.971 1.015 1.032 1.051 1.088 1.033 0.025 118
Research institutes 0.913 0.992 1.013 1.036 1.086 1.010 0.042 18
Classified hospitals 1.010 1.022 1.025 1.042 1.072 1.035 0.022 5
Private and public clinics 0.919 1.028 1.068 1.099 1.317 1.067 0.074 51

Staff elasticities structure type
Hospitals 0.003 0.302 0.375 0.449 0.600 0.369 0.123 118
Research institutes −0.045 0.187 0.265 0.354 0.703 0.282 0.183 18
Classified hospitals 0.269 0.321 0.353 0.426 0.563 0.387 0.104 5
Private and public clinics −0.326 0.253 0.478 0.604 1.297 0.453 0.303 51

In conclusion, we think that the presented methodology and relative results can be considered really
interesting for the decision making processes. In fact, both random and fixed effect estimates are easily
interpretable. From an administrative point of view, they can be used to identify the different produc-
tive observed conditions (both technical and scale inefficiency) and, in case, to decide the preferable
interventions.

Acknowledgements

Section 1 as well as the supervision of the paper is due to EG, the remaining sections were developed
jointly by LG and SCM. If need be, Sections 2–4 could be attributed to LG and Sections 5–6 to SCM.

REFERENCES

AIGNER, D. J., LOVELL, C. A. K. & SCHMIDT, P. J. (1977) Formulation and estimation of stochastic frontier
production models. J. Econometrics, 6, 21–37.

BANKER, R. D. (1984) Estimating the most productive scale size using data envelopment analysis. Eur. J. Oper.
Res., 17, 35–44.

BARNETT, V. & TOBY, L. (1994) Outliers in Statistical Data. Chichester: Wiley.
CHAMBERS, R. G. (1988) Applied Production Analysis. A Dual Approach. Cambridge: Cambridge University

Press.
CHRISTENSEN, L. R., JORGENSON, D. W. & LAU, L. J. (1973) Transcendental logarithmic production frontiers.

Rev. Econ. Stat., 55, 28–45.
CRIBARI-NETO, F. & ZARKOS, S. G. (1999) R: yet another econometric programming environment. J. Appl.

Econ., 14, 319–329.
GODFREY, L. G. (1988) Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other

Approaches. New York: Cambridge University Press.
GOLDSTEIN, H. & HEALY, M. J. R. (1995) The graphical presentation of a collection of means. J. R. Stat. Soc.

Ser. A–G, 159, 505–513.
GORI, E., GRASSETTI, L. & ROSSI, C. (2002) Linear mixed models in efficiency analysis: evidence from valida-

tion procedures. Stat. Appl., 14, 247–275.
GRANT, J. H. (1993) The translog approximate function—substitution among inputs in manufacturing evaluated

at sample means. Econ. Lett., 41, 235–240.



www.manaraa.com

MULTILEVEL FLEXIBLE SPECIFICATION OF THE PRODUCTION FUNCTION 395

GREENE, W. H. (1993) The econometric approach to efficiency analysis. The Measurement of Productive Effi-
ciency (H. O. Fried, C. A. K. Lovell & S. S. Schmidt eds). New York: Oxford University Press.

IHAKA, R. & GENTLEMAN, R. (1996) R: a language for data analysis and graphics. J. Comput. Graph. Stat., 5,
299–314.

KIM, H. Y. (1992) The translog production function and variable returns to scale. Rev. Econ. Stat., 74, 546–552.
LANGFORD, I. H. & TOBY, L. (1998) Outliers in multilevel data. J. R. Stat. Soc. Ser. A–G, 161, 121–160.
LEYLAND, A. H. & GOLDSTEIN, H. (2001) Multilevel Modelling of Health Statistics. Chichester: Wiley.
PINHEIRO, J. & BATES, D. (2002) Mixed-Effects Models in S and S-PLUS Series: Statistics and Computing. New

York: Springer.
RAY, S. C. (1998) Measuring scale efficiency from a translog production function. J. Prod. Anal., 11, 183–194.
RYAN, D. L. & WALES, T. J. (2000) Imposing local concavity in the translog and generalized Leontief cost

functions. Econ. Lett., 67, 253–260.
VERBEKE, G. & MOLEMBERGHS, G. (2000) Linear Mixed Models for Longitudinal Data. New York: Springer.



www.manaraa.com

396 L. GRASSETTI ET AL.

Appendix: Elasticity results

TABLE A1 Estimated elasticities computed with respect to each input variable and scale elasticity

Beds Staff Scale Beds Staff Scale
HospID Elasticity Elasticity Elasticity Beds Staff HospID Elasticity Elasticity Elasticity Beds Staff

1 1.010 0.330 1.339 170 351 46 1.006 0.238 1.244 128 246
2 1.031 0.367 1.397 853 1327 47 1.049 0.445 1.494 162 322
3 1.015 0.311 1.326 622 1187 48 1.016 0.240 1.256 75 202
4 0.997 0.238 1.235 630 1042 49 1.031 0.374 1.405 165 303
5 1.001 0.185 1.186 151 217 50 1.006 0.133 1.138 50 102
6 1.039 0.401 1.440 293 579 51 1.068 0.518 1.586 271 485
7 1.007 0.206 1.213 268 285 52 1.062 0.472 1.534 329 676
8 1.060 0.475 1.535 123 228 53 1.021 0.113 1.135 58 55
9 1.054 0.411 1.465 400 95 54 1.025 0.353 1.378 351 559

10 1.141 0.765 1.907 126 143 55 1.122 0.697 1.819 168 219
11 1.061 0.509 1.570 214 559 56 1.125 0.710 1.835 110 168
12 1.044 0.363 1.406 77 154 57 1.068 0.478 1.546 80 48
13 1.050 0.444 1.494 368 702 58 1.048 0.150 1.198 282 309
14 1.046 0.443 1.489 140 280 59 1.133 0.719 1.852 130 134
15 1.042 0.422 1.464 102 234 60 1.146 0.713 1.860 300 365
16 1.042 0.426 1.469 258 408 61 0.872 -0.430 0.442 160 170
17 1.073 0.569 1.642 270 932 62 1.023 0.245 1.268 71 65
18 1.022 0.321 1.343 201 321 63 1.084 0.564 1.648 60 55
19 1.074 0.520 1.594 180 182 64 1.328 1.303 2.631 136 232
20 0.989 0.193 1.182 106 126 65 0.995 0.261 1.256 260 350
21 1.068 0.471 1.538 100 100 66 1.039 0.397 1.436 182 240
22 1.043 0.244 1.287 170 183 67 1.039 0.378 1.417 91 98
23 0.965 -0.223 0.742 60 42 68 1.061 0.464 1.525 190 185
24 1.028 0.296 1.324 32 91 69 1.092 0.601 1.692 198 358
25 1.036 0.432 1.468 525 926 70 1.116 0.758 1.874 380 681
26 1.049 0.439 1.488 130 267 71 1.086 0.743 1.830 60 70
27 1.059 0.494 1.553 140 331 72 1.016 0.226 1.243 144 96
28 1.027 0.288 1.315 92 180 73 1.025 0.307 1.332 105 242
29 1.026 0.315 1.340 342 538 74 1.045 0.445 1.490 495 943
30 1.056 0.482 1.538 172 461 75 1.084 0.557 1.640 129 264
31 1.006 0.233 1.239 260 474 76 1.030 0.366 1.396 212 377
32 1.089 0.606 1.695 349 663 77 1.008 0.263 1.271 157 240
33 1.088 0.581 1.669 72 240 78 0.963 0.179 1.142 163 226
34 0.998 0.240 1.238 587 977 79 1.033 0.352 1.384 140 244
35 1.044 0.446 1.491 549 1270 80 1.028 0.342 1.371 186 232
36 1.053 0.482 1.534 391 857 81 1.063 0.443 1.506 170 321
37 1.089 0.592 1.681 188 434 82 1.064 0.487 1.551 68 165
38 1.033 0.374 1.408 258 469 83 1.074 0.563 1.637 279 585
39 1.033 0.374 1.407 493 1016 84 0.986 0.122 1.108 78 182
40 1.036 0.413 1.449 511 1347 85 1.306 1.290 2.596 130 229
41 1.015 0.354 1.368 575 1109 86 1.100 0.570 1.670 148 107
42 1.010 0.198 1.209 223 333 87 0.979 0.172 1.151 142 152
43 1.047 0.414 1.461 141 262 88 0.982 0.175 1.156 135 174
44 1.010 0.321 1.331 504 1085 89 1.032 0.387 1.418 319 415
45 1.022 0.334 1.357 238 493 90 1.047 0.449 1.496 420 551



www.manaraa.com

MULTILEVEL FLEXIBLE SPECIFICATION OF THE PRODUCTION FUNCTION 397

TABLE A1 Continued

Beds Staff Scale Beds Staff Scale
HospID Elasticity Elasticity Elasticity Beds Staff HospID Elasticity Elasticity Elasticity Beds Staff

91 0.976 0.022 0.998 92 128 135 1.057 0.480 1.537 135 327
92 0.974 -0.056 0.918 108 184 136 1.066 0.476 1.541 174 211
93 1.035 0.357 1.392 35 47 137 1.057 0.461 1.518 95 181
94 1.060 0.493 1.553 236 616 138 1.042 0.423 1.465 201 534
95 1.052 0.482 1.534 366 667 139 1.146 0.733 1.879 94 85
96 1.037 0.378 1.414 167 368 140 1.054 0.451 1.505 269 541
97 1.016 0.319 1.335 197 292 141 1.037 0.404 1.441 405 789
98 1.036 0.415 1.451 155 272 142 1.079 0.503 1.582 180 79
99 1.020 0.345 1.366 203 378 143 1.123 0.794 1.917 744 210

100 1.031 0.383 1.414 168 300 144 1.017 0.358 1.375 1021 1644
101 1.008 0.284 1.292 90 211 145 1.004 0.263 1.267 481 732
102 1.083 0.601 1.684 118 391 146 1.057 0.489 1.546 230 487
103 1.029 0.247 1.276 100 92 147 1.042 0.460 1.502 917 2135
104 1.009 0.267 1.276 378 624 148 1.030 0.411 1.440 895 1653
105 1.095 0.554 1.649 275 430 149 1.035 0.400 1.436 724 1407
106 1.066 0.484 1.550 105 107 150 1.015 0.327 1.342 706 1461
107 1.073 0.492 1.564 145 133 151 1.018 0.390 1.408 1574 3198
108 1.078 0.552 1.630 319 421 152 0.997 0.301 1.298 2155 3802
109 0.996 0.024 1.019 86 65 153 1.029 0.415 1.445 747 1558
110 1.052 0.445 1.497 320 325 154 1.012 0.337 1.348 941 1630
111 1.047 0.402 1.449 120 113 155 1.010 0.360 1.370 1298 2570
112 1.018 0.288 1.306 122 146 156 1.032 0.426 1.458 644 1462
113 1.023 0.251 1.274 86 123 157 0.971 0.087 1.058 494 1081
114 1.028 0.368 1.396 102 192 158 1.015 0.399 1.414 746 2369
115 1.035 0.335 1.370 140 171 159 1.007 0.370 1.377 1608 4113
116 1.057 0.419 1.476 125 205 160 1.009 0.348 1.358 564 1529
117 1.071 0.548 1.619 345 661 161 1.008 0.280 1.289 766 1642
118 1.047 0.465 1.512 452 745 162 1.024 0.384 1.408 613 1401
119 1.104 0.621 1.724 100 89 163 1.025 0.215 1.240 80 103
120 0.974 0.027 1.001 76 61 164 0.991 0.306 1.297 750 2520
121 1.098 0.608 1.706 160 135 165 0.936 0.108 1.044 510 1511
122 1.100 0.559 1.659 30 17 166 1.036 0.407 1.443 207 525
123 1.003 0.182 1.185 57 39 167 1.032 0.428 1.460 1394 2965
124 1.076 0.508 1.584 147 142 168 0.990 0.103 1.093 53 192
125 1.059 0.435 1.494 162 229 169 1.004 0.206 1.210 173 253
126 1.079 0.590 1.668 147 210 170 1.016 0.273 1.289 130 194
127 1.040 0.450 1.490 472 902 171 1.037 0.259 1.296 64 57
128 1.020 0.246 1.266 95 124 172 1.091 0.731 1.823 189 410
129 0.991 -0.001 0.990 97 115 173 1.056 0.542 1.597 993 3150
130 1.023 0.345 1.368 120 127 174 0.993 0.137 1.130 154 321
131 1.041 0.373 1.413 137 143 175 0.908 -0.071 0.837 110 747
132 1.077 0.485 1.562 145 113 176 1.010 0.337 1.347 242 487
133 1.056 0.467 1.524 164 320 177 1.038 0.325 1.363 159 247
134 1.019 0.199 1.218 90 142 178 1.001 0.203 1.205 287 390
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